641 research outputs found

    Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies

    Get PDF
    The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21K was observed in the most Fe deficient film (x=0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.Comment: 15 pages, 4 figure

    Graphene doping to enhance flux pinning and supercurrent carrying ability in magnesium diboride superconductor

    Get PDF
    It has been shown that graphene doping is sufficient to lead to an improvement in the critical current density - field performance (Jc(B)), with little change in the transition temperature in MgB2. At 3.7 at% graphene doping of MgB2 an optimal enhancement in Jc(B) was reached by a factor of 30 at 5 K and 10 T, compared to the un-doped sample. The results suggested that effective carbon substitutions by grapheme, 2D nature of grapheme and the strain effect induced by difference thermal coefficient between single grapheme sheet and MgB2 superconductor may play an important role in flux pinning enhancement

    Social democracy, embeddedness and decommodification: On the conceptual innovations and intellectual affiliations of Karl Polanyi

    Get PDF
    Of the several debates that revolve around the work of the economic historian and political economist Karl Polanyi, one that continues to exercise minds concerns his analysis of, and political attitudes toward, post-war capitalism and the welfare state. Simplified a little, it is a debate with two sides. To borrow Iván Szelényi's terms, one side constructs a ‘hard’ Karl Polanyi, the other a ‘soft’ one. The former advocated a socialist mixed economy dominated by redistributive mechanisms. He was a radical socialist for whom the market should never be the dominant mechanism of economic coordination. His ‘soft’ alter ego insisted that the market system remain essentially intact but be complemented by redistributive mechanisms. The ‘double movement’ – the central thesis of his ‘Great Transformation’ – acts, in this reading, as a self-correcting mechanism that moderates the excesses of market fundamentalism; its author was positioned within the social-democratic mainstream for which the only realistic desirable goal is a regulated form of capitalism. In terms of textual evidence there is much to be said for both interpretations. In this article I suggest a different approach, one that focuses upon the meaning of Polanyi's concepts in relation to their socio-political and intellectual environment

    Spatiotemporal Correlations between Blood-Brain Barrier Permeability and Apparent Diffusion Coefficient in a Rat Model of Ischemic Stroke

    Get PDF
    Variations in apparent diffusion coefficient of water (ADC) and blood-brain barrier (BBB) permeability after ischemia have been suggested, though the correlation between ADC alterations and BBB opening remains to be studied. We hypothesized that there are correlations between the alteration of ADC and BBB permeability. Rats were subjected to 2 h of transient middle cerebral artery occlusion and studied at 3 and 48 h of reperfusion, which are crucial times of BBB opening. BBB permeability and ADC values were measured by dynamic contrast-enhanced MRI and diffusion-weighted imaging, respectively. Temporal and spatial analyses of the evolution of BBB permeability and ADC alteration in cortical and subcortical regions were conducted along with the correlation between ADC and BBB permeability data. We found significant increases in BBB leakage and reduction in ADC values between 3 and 48 h of reperfusion. We identified three MR tissue signature models: high Ki and low ADC, high Ki and normal ADC, and normal Ki and low ADC. Over time, areas with normal Ki and low ADC transformed into areas with high Ki. We observed a pattern of lesion evolution where the extent of initial ischemic injury reflected by ADC abnormalities determines vascular integrity. Our results suggest that regions with vasogenic edema alone are not likely to develop low ADC by 48 h and may undergo recovery

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    Full text link
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figure
    corecore